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TRANSTENT VIBRATION ANALYSIS OF LINEAR SYSTEMS USING

TRANSITION MATRICES

By Anthony Craggs
Institute of Sound and Vibration Research
University of Southampton.

ABSTRACT

A step by step Transition matrix method is presented for solving a
set of equations of motion. The stability criteria which govern the choice
of step size are given in the first part of the report: these are related to
the highest eigenvalue of the system under consideration. The use of the
technique for evaluating the response to a set of forces and prescribed motions
is given in a theoretical discussion. Using the finite element displacement
procedure to idealise the structure the method has been applied to several
rectangular plate problems and good agreement is obtained between theoretical
and experimental results. The results for the transient motion of a simply
supported plate are compared with similar results obtained by using a standard
4th order Runge Kutta procedure and it is shown that the transition matrix
solutions are more accurate, and there is also a substantial decrease in the
computation time per step.

INTRODUCTION

At the present time much work is being carried out on the approximate
formulation of the equations of motion in problems of structural dynamics. If
the problem is formulated in terms of the system displacements and the system
is linear then the resulting equations may be expressed in the matrix form:

My + Dy + Ky = F(t) (1)

where M, D and K are square symmetric matrices, Y and E are column vectors
representing the unknown displacements and the known forcing function respective—
ly. When obtaining a solution to this equation, most of the work has been in the
frequency domain; either for the case where the structure is in a state of free
vibration, or, for the response of the structure to a harmonic forcing function.
The solution in the time domain may be achieved by the now standard numerical
techniques - namely, Runge Kutta and Adams (1) or by the less sophisticated
engineering methods suggested by Timoshenko (2) and Newmark (3). While these
methods are general in that they may also be applied to non-linear systems,

when they are applied to a set of equations of the type shown above they do

not utilize the fact that the matrices M, D and K are constant, and conse-
quently lose a significant advantage. This report deals with the step by step
method which does utilize the fact and makes an indirect use of the Taylor
series.



The Taylor series is first used to deduce a recurrence relationship
which, for free vibration, gives the response at one step in terms of the
response at a previous step by means of a Transition matrix. When the system
is forced it is necessary to add further terms in the recurrence relationship,
the actual number depending upon the nature of the forcing function. However,
if the step size is small compared with the largest period of the system it is
sufficient to include only one additional term. The advantages of the method
over the standard techniques are a substantial decrease in computation time
and an increase in the accuracy of the solution if a high order Taylor Series
is used in evaluating the Transition matrix.

As with the other step-by-step procedures the step size cannot be
chosen arbitrarily: it is usually some fraction of the smallest period of
the system; otherwise the numerical solution becomes unstable. The stability
condition for a different number of terms of the Taylor Series may be found by
considering a damped single degree of freedom system; this aspect is covered
in the first section of the report.

A general procedure for determining the response to an arbitrary
forcing pulse and prescribed boundery motion is given and this is expressed
concisely in terms of matrix operations. The theory is applied to several
examples using the finite element displacement technigue to idealise the
structure, and good agreement is obtained where a comparison has been made
with some experimental work.

SYMBOLS

w displacement response

¥ displacement response column vector

{w} column vector containing displacement and velocity response vector
g displacement vector for coupled system

E force column vector

% force column vector for coupled system

{F} column vector containing force and force time derivative vectors
Dﬂ square mass matrix

ﬁﬂ sguare damping matrix

K] square stiffness matrix

ET] square Transition matrix for response terms



pﬂ square Transition matrix for forcing terms

Fﬂ rectangular Boolean transformation matrix relating element coordinates
to the overall system coordinates

(1] unit matrix

h step size

Z complex transfer term

A angular natural frequency, undamped system
R critical damping factor

E Young's modulus

0 plate density

u Poisson's ratio

th plate thickness

fi Hermitian interpolation polynomials

TE kinetic energy

VE strain energy

BE term whose variation gives the work done by the externally applied

forces in a virtual displacement
a,b overall dimensions of rectangular plate element
Js n, r integers

a damping factor where damping matrix is proportional to the
stiffness matrix (o < 1)

STABILITY CRITERIA

In this discussion there is nothing to be gained by dealing with a
set of differential equations or forced vibration. A1l of the relevant
points are brought out by considering the equation of motion of a single
degree of freedom system:

W+ 28w + 2w =0 (2)

The exact solution to this equation has the form w = WeQt where both W
and  are complex gquantities.



Q=-alg +3/1- g2 (3)

In the numerical procedure for solving (2) the solution moves forward in a
number of small steps and, within each step, the solution is obtained by
using only g finite number of terms of the Taylor Series. It will be shown
that if the step size does not satisfy certain c¢riteria the solution will
become unstable. The Taylor Series gives:

e L

w(t + h) = w(t) + mi(t) + bow(t)/2! + n3% (£)/3! + n't W () /4!
where h is the step size.

Substituting for w and W, etc. from the exact solutions then

w(t + ) /() = O+ gn + 9202721 + 2903/31 + Mt AAL 4 L)
w(t + nh)/w(t) = {1+ n+ o7no/2t + @3n3/31 thh/h! + )

7o,

n

The term 7 1is complex and for stability the modulus of this gquantity should
be less than or equal to 1; otherwise the estimate will always become greater
with the number of multiplications. To determine the effect of step size
values of |Z| have been computed using a different number of terms of the
Taylor Series, and various values of the damping factor between B= 0.0 and
B= 0.2. Some of the results of these calculations are plotted in Fig. 1 and
Fig. 2. These show that above a certain value of Aih, |Z| becomes greater

than unity. This value is Ahcrit and differs with the order of the Taylor

Series used. A summary of the critical values of Ah 1s given in Table 1.

In general, it shows that the increase in step size is allowed with an increase
in the order of the series. However, there is a fall off in the advantage
gained where 6th and Tth order series are used. There is a further gain with
an 8th order series.

For systems with further degrees of freedom the step size will need
to be related to the highest eigenvalue Av’ i.e. a fraction of the smallest
period, and provided Avh < thrit then the method will be stable. This is
one of the unfortunate aspects of step-by-step methods as often the response
is dominated by the lower modes of vibration, and for good resolution the
step size would only need to be a fraction of the largest period.

The conditions which govern the value of Ahcrit only guarantee a

solution which does not diverge, they do not necessarily guarantee a good
approximation to the true solution, therefore a criterion for accuracy is
needed. This was achieved in a heuristic manner by comparing the computed
values of !Z] with the exact | Ze| value given by
-B(A

z] = o HMR)
In Fig. 1, (B = 0.0), the exact value is the horizontal line at 2Z = 1.0. 1In
Fig. 2 (B= 0.2), the exact solution is shown as a dotted line. It may be
seen that when XMh 1is small the computed curves lie close to the actual
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solution, but after a certain value Ahacc the curves tend to diverge from

the true solution. The approximate solutions will then behave as though the
system is more or less damped than it actually is depending upon whether |Z|
is above or below IZIe. A set of curves similar to Fig. 1 and Fig. 2 has

been made for B = 0.0002, 0.002 and 0.02; these are not presented in the
paper., The average values for Ahacc are shown in Table 3. It may be noted

that for this criterion there is always an improvement with an increase in the
order of the Taylor Series.

THE APPLICATION OF THE TAYLOR SERIES TO SYSTEMS WITH MANY DEGREES OF FREEDOM

The usual use of Taylor Series involves the calculation of a number of
higher derivatives at each step, the number depending upon the order of the
series. For some equations this may be a serious drawback as the derivatives
may turn out to be complicated functions. However with a linear system the
variables have constant coefficients and this leads to a substantial simpli-
fication as all of the higher derivatives may be more easily expressed in terms
of the displacement and velocity by repeated substitution into the eguation of
motion.

The equation of the system may be written in the form

W= MKy - M 1Dy + MU (L)
o v Y] Ny

By successive differentiation of this equation with respect to time,
the n th derivative of w may be written for =n > 2.

wn = _M—J_Kwn—Q _ M—lDw_n—l + M—an"2 (5)
Y] Y] Y] Qv

This equation will now be used to express every term in the series in terms of

displacement and velocity. In what follows the case of free vibration is con-
sidered first and it is shown that the response at one step is related to that

of the previous step by a single Transition matrix. The modification to this

recurrence relationship due to the forcing term is then considered in the next

stage.

Free Vibration

For free vibration F is zero. The Taylor Series expansion for ¥

and ﬁ is then o.. 3 L

=w_ + hw_ + hw /2' + b WA+ hw /bl + ...
ny Yy vy AV} Yy

W
Apr+l r

. . .. Bawe 114 ,
W = ¥ F hiy  + h Hr/a. + hag}/3. + ...

Now, by repeated application of equation (5) the second and higher derivatives,

all of the terms on the right hand side of these equations may be written in

terms of the displacements and velocities ¥,. and ﬁr:—



: = + v W = | T T :
L R E L W 11 12 | ¥ (6)
, 1.e.
Yee1 = Tor¥e ¥ Too¥r Ylre1 Tor o Top| Ll
The values of Tll will depend upon the number of terms used and the
value of the step size h. The actual expressions have been avoided as these

are complicated. In practice they will be systematically evaluated inside
the computer.

The matrix T is the Transition matrix which may be computed to any
order within the capacity of a computer. It is important to note that once
it has been found a higher order Transition matrix will not require any longer
computing time than one of a lower order when generating the response. The
response to a given set of initial conditions {wo} is given by

- r
{w},. [T]" ()} (7)
where (w} = w\
. IV

¥

To illustrate the method the solution for an undamped oscillator was found
using a 4th order T matrix. These were compared with the exact solution and
solutions obtained by other methods obtained from ref. (L). The eguation
considered was W + w = 0, a step size of h = 0.25 was used; this satisfied
the stability criterion xh < 2.8 and the criterion for accuracy Ah < 1.0,
as A = 1.0. The appropriate Transition matrix and the response generated to
a unit initial displacement is shown in Table 3. This computed response is
almost identical to the exact solution to four decimal places,

Forced Vibration

For conciseness only a L4th order description of the forcing is con-—
sidered. The extension to a higher order will be clear.

The equation of motion is

= - el - [e2]y™™ 4 [p]E" (8)
where o I T _ I R
ex) = M7} K] s [e2) = 7] [D)«

It may be shown after substitution of equation (8) in the Taylor Series that
terms in displacements and velocities are separate from the force terms and
the resulting equations for the responses are:-

W = Ty fw, + [T l0, + (G7 [I] - 37 le2] - g7 [e1] + g7 [e2][e2) M T]F +..
3 L N
h -1y h -1
+ 37 (Il - g7 [e2]) [M)E + g7 MT[E 4 ...



2 3 — 2 - . - - .
faer = [Ta) iy * [Tppliy *+ (1] - 37 (e8] - 37 [er] + 57 [e2] [e2] ]g + ...

2 3 . 3 1.
(Fr [1] - &5 [ee]) [M01E + &7 M1 + e

27
that is: o _ L _
! I R SRR S S
Win+l L}\:T,!n i 821 %22 Ef . -1:313 e
where
b 2 3 Lo Lo _
[a,] = Gy [1] - %7 [e2] - 2y [e1] + gy [e2] [c2]) ]
. 3 b _
[ap] = & 1] - Z5 [ee]) )
h2 h3 . _. S
[op) = (u[1] - 57 [e2)-5p [e1] + 37 le2lfe2]) ]
[epp] = Gp (1] - S5 [e2]) ] (9)

In general, it is difficult to specify the derivatives of the forcing function.
However, if the step size is small, which it usually is to satisfy the stability
condition, then the effects of these are negligible and it 1s then sufficient

to write the relationship for e

=t oge o+ [l (I (10)
Yot i-? o
X in+l Xn %J

Exact solutiong may be built up if F has the form ekt, sin kt, cos kt
because then LAJ may be formed to the same accuracy as LTJ.

The response is generated by repeated application of equation (10)
it may be shown by substitution that:

w, = Lo+ [T LA ey + (11772 [)epy + B [dpy + ... ()

Response to Prescribed Boundary Motions

Often the system that is under consideration, forms part of a much
larger system, e.g. a window in a building with thick walls. When this is
the case the dynamic flexibility of this "minor" system is such that when
distorted the reacting forces are insufficient to produce any significant
effect on the '"major system'. When the major system 1s disturbed it will
force the boundaries of the minor system to move with it. In studying the



minor system it is necessary to solve for these prescribed boundary motions.

The equation is deduced by considering first the response of the
system(in the uncounstrained ~tate) to a set of forces located at the prescribed
coordinates. It is then convenient to arrange the equations in the form:

M (5) o+ K (w) = (%

Wf wf 0

where the suffices p and f refer to prescribed and free displacements.
partitioning the mass and stiffness matrices gives

W + i K| W = |F
P 24 P P
-7 k|
|

Multiplying this out gives the two equations

I
|

[Mpp Xp Ewpf] e [KPPJ B I-Kpf—h{f " p (1)

(12)

|
(@]

[pr]ip My ¢ ey + Kol W

Equation (12) gives the motion of the free coordinates in terms of the known
displacement H@ and the solution for a transient disturbance may be written

in terms of Transition matrices

= - — —— ’-.- _ I -—
Ve [Tee] (W)  + Bpgl pr, 0| |, Kfpi 0 | (w,
wf 1 Vol 0 pr_ WP 0 Kfp- wb r
(13)

The equation shows that the free coordinates are excited through inertia and
stiffness coupling terms. If a lumped mass idealisation of the system is made,
resulting in a diagonal mass matrix, no inertial coupling will take place
because [pr] is then a null matrix.

Coupling of Transition Matrices

It may be useful to determine the Transition matrix for a coupled
system from a knowledge of the transition matrices of the subsidiary systems.
The procedure for this is an approximation only, giving good results only if
the step size is sufficiently small.



Y1 X
| <—
[ —— P St
1B Ho
— < :
For system 1 {w,} = [Ti] {w b+ EAi] {F,}
n+l n
For system 2 {w,} = [TQ] {w,} + EAé] {F }
n+l n

These two equations may now be written as & single matrix equation
{ X’i} =]t o {Wll + {Al 0 Fl}
A2 0 TeJ Y2 0 Az} Fa
i.e. Wl = [TJ w, ot [¢]§ﬂ
If the systems are now linked together, so that certain coordinates are common,

the applied forces relative to the coupled system are related to those of the
independent systems by the Boolian matrix B, 1.e.

g = Blg
and for compatability, AT
© = [B]'g

Then substituting for w
AT T

(Bl7g = [<|[B] g, + [olg,

- =1

pre-multiplying by L¢I AU o1 . T

17 [B]7a = Do) [7] BT, + &,

pre-multiplying by |B]

B106)™ [8]7q,, = [B] )7 [x) [B)7a, + &
a1 = (B BB o] [ B Mg, + (B]1e] ™ 1D,
The Transition matrix for the complete gystem then is

(8] [o]™ B]D™ ([B][e] <) [B]D) (14)

therefore,

The merits of this formulation have to be evaluated and it may only be useful
when small additions are made to a larger system.



USE OF FINITE ELEMENTS IN FORMING TRANSITION MATRICES FOR PLATE SYSTEMS

The equation of motion of a structure may be formulated from
Hamilton's variational principle: +this states that between two instants

of time ty and t2 the motion proceeds in such a way that
t

2
S (TE = VE + BE) = O
t

where TE is the kinetic energy, VE +the strain energy and BE a function
whose variation gives the work done by the external forces in a virtual
displacement (5). Mason (6) uses the finite element displacement technique
and invokes this principle to form the mass and stiffness matrices for plates.

An outline of the finite elements adapted to this present report is
given below and is fully described in (6). The method consists of dividing
the plate into a number of rectangular elements, the displacement in each
element 1s then given by a number of assumed modes and the coefficients of
each mode are related to the nodal displacements. Here, 4 unknowns per element
corner were used; these were w, dw/dx, ow/dy, 32w/axay. The assumed modes
were built up from the following polynomials fi(t) having the properties

£(0) £'(0) £(1) £1(1)
fl(e) = 1-3° + 260 1 0 0 0
f2(5) = g - 282 + 83 0 1 0 0
f3(€) = 362 - 263 0 0 1 0
fh(e) = e3 - 82 0 0 0 1
The element displacement is given by
( ) ) (x)f.(y)
wix = LPo(x)f.

There are therefore 16 unknowns oa.., and because of the above properties of
fi(x), each unknown may be expresseaJin terms of one of the nodal displacements

and the element dimensions a, b. The element displacements may then be
conveniently written

wix, y) = {we}T {fxfy}

where {we} is a column vector (16 x 1) containing the 4 nodal displacements:

v, a X b Rl {f.f } is a vector containing the 16 polynamial
? ox’ oy’ x93y’ Xy

expressions.

10



Mass and Stiffness Matrices

The derivation of the element mass and stiffness matrices is found
from the variation of TE and VE respectively. The procedure is given in

(6).

The mass matrix for a rectangular element of dimensions a, b is:-

b ra
T
oth {£,£3 (£,£}" dxdy
070
The stiffness matrix is
3 b ra
E th 1" 1" T 11 " T " 1" T
R O + +
> {fxfy}{fxfy} {fxfy}{fx;y} V{fxfy} {fxfy}
12(1 - u©) o o

" ' T T
+ VIS LN (FLL 3T + 2(1 —w) (£ fi}f 203 ) dxdy

If there is a pressure distribution F(x, y, t) acting over the element the
function BE is given by

b ra
BE = wix, y) F(x, y, t)dxdy
but T 0 -0
w(x, y) = ) TIELE )
b a
therefore T
BE = {We} {fxfy} F(x, y, t)dxdy
0 0
The forcing vector is found by the variation of this quantity with respectto
. oW
the nodal displacements w, 5%° ete b ra
_ _3BE _n
Ei = {awi} = Fyy {fxfy} F(x, y, t)dxdy
0 O

where T yy 1is a diagonal matrix with the following non-zero terms in the order
[1, a, b, ab, 1, &, b ab, 1, a, b, ab, 1, a, b, abJ
In general these integrals may be quite complicated especially for
travelling waveforms. For the purpose of this report only simple functions

of F were used:

(a) If F is a uniform pressure normally incident on the plate the forcing
vector for an element is

11



bra
- ~
F. F(t) v, {fxfy} dxdy

00
(bp) If F is a point force at the position x, y,

{if_ ,f_ 1

The equations of motion for the complete plate are obtained by
assembling the element matrices by applying the conditions of compatability
and dynamic equilibrium along the element boundaries. Where the coordinates
are common the coefficients of the element mass and stiffness matrices and
forcing vectors are additive. The procedure for assembling element matrices
is described in (6). The damping matrix was assumed to be viscous and
given by a constant times the stiffness matrix.

The equation of motion of the damped system is then of the form
Mﬁ + oKy + Ky =TF
[a¥) [av] n
usually a << 1, In this way, the damping does not couple the normal modes,

and the critical damping factor, B, is larger for the modes with highest
natural frequencies.

Construction of the Transition Matrices [T] and [A]

Before a particular transient vibration problem could be solved it
was necessary first to determine the T and A matrices for the given
configuration and step-size, h, The A matrix was calculated by carrying
out the matrix operations indicated in equation (9). When computing the T
matrix use was made of the equation:

{TJ.} = [T] .‘81
L

W

N

PO
L 0 )

i.e. the J th column of T is found by post-multiplying T by a column

vector in which the J term is unity, the remaining terms being zero. {T.}

may be found therefore by using the Taylor Series and equation (5) for the
second and higher derivatives to determine the response to & unit value at
X.. Note that for 'n' degrees of freedom system the T matrix is of order
ofl x 2n so that there will be 2n of these operations. If they are carried
out in order, the first n columns represent the responses to unit displace-
ments at the station j (1 < j < n), the second n columns represent the
responses to unit velocities at station Jj (1 < j < n).

12



RESULTS AND DISCUSSION

Finite Element Applications

The theory on the application of Transition matrices to a system
with many degrees of freedom has been applied to several structural idealisa-
tions. The idealisations being made by applying the finite element displace-
ment formulation discussed in the previous section. By this means the whole
problem may be dealt with on a numerical basis and the formulation and
solution of the eguations are achieved without any resort being made to normal
modes. To further illustrate the stability criterion mentioned in the first
section the effect of step size on the maximum values for the forced response
of a simply supported plate are shown. The advantages of an 8th order
Transition matrix over a standard Lth order Runge-Kutta procedure are also
illustrated.

Fig. 3 shows a comparison of Transition matrix solutions with some
experimental results which were obtained from reference (7). These were for a
rectangular plate of dimensions 18" x T.5" x 0.282", with one of the edges of
dimension T7.5" clamped; the other edges were free. The plate was idealised
by using four equal rectangular elements, each element having four unknowns

w, dw/dx, ow/dy, 32W/8X3y per corner. When the appropriate constraints
had been applied the resulting system had 19 degrees of freedom. The agree-
ment between the experimental and theoretical results is good, though the
relative frequencies of the upper modes to the lowest mode for the idealised
system seem to be high. This is possibly due to the fact that only a small
number of elements were used and therefore over constraining the system; it
could also be due to the neglect of rotary inertia when forming the mass
matrix.

There  is an important aspect of this apparently simple system which
should be mentioned. Nearly 2000 multiplications by the Transition matrix
were necessary to obtain the response diagram shown in Fig. 3. This was because
the eigenvalues for the system were well separated, and, since the step size
was governed by the highest eigenvalue, it had to be small compared to the
largest period to satisfy the stability criterion. A more complex system may
not have this property for the same number of degrees of freedom, as the
eigenvalues tend to lie closer together; consequently a complete period of
the fundamental mode may be obtained with a much smaller number of steps.

Figs. 4 and 5 compare the response of a plate with all edges simply
supported and a plate with all edges clamped, to a normally incident 'N' wave.
Both plates had the same dimensions: 36.0" x 18.0" x 0.25". The simply sup-
ported plate was idealised with L4 elements and the clamped plate with 9
elements. When the appropriate constraints had been applied both configura-
tions then had the same number of degrees of freedom. Due to the additional
stiffness the clamped plate has a smaller response and the frequency of the
fundamental mode is almost double that for the simply supported plate. (Note:
the responses shown in Figs. b and 5 do not refer to the same point. For the

13



simply supported plate the response was at the centre, x = 9", y = 18", for the
clamped plate the response was at x = 6", y = 12". The clamped plate response
at the plate centre would then be about 50% more than those shown.) In contrast
to the cantilever plate system the response histories shown in Fig. L were
obtained with only 200 steps; this is due to the natural frequencies lying
closer together, and the smaller number of degrees of freedom (16 cf. 19).

The curves shown in Fig. 5(a) are shock spectra which were obtained by ex-
tracting the maximum values for the displacement and velocity responses to

'N' waves of different duration. On the shock spectra the maximum value is
seen to occur when the duration of the 'N' wave is equal to the period of the
fundamental mode. In Fig. 5(b) a factor Np gives the number of positive

peaks which occur in one period of the fundamental mode; this gives some
indication whether higher modes are participating in the response. The
results show that the digplacement responses are essentially unimodal and
most of the velocity responses but for a few cases where the pulse duration
is short.

Fig. 6 shows the effect of increasing the step size on the maximum
value of the response of a simply supported plate to an 'N' wave. A com-
parison is made between the 8th order Transition matrix results and the
results obtained using a standard 4th order Runge-Kutta process for the for-
ward integration (Appendix 1). All of the results have been normalized by
dividing by the Transition matrix results at the smallest step size used
(h = 1.0). Two points are illustrated: first, the Transition matrix gives
a gain in step size before the onset of instability; second, within the
stable range the maximum value for the Transition matrix solution does not
diverge so much for increasing step size. This suggests greater accuracy.
The points plotted beyond the stable range were the values that occurred at
a time that the stable solution gave a maximum. These 1n themselves seem
reasonable, and it is the subsequent motion which is divergent. For the
system considered there was a substantial reduction in the computation time
per step & 0.1295 seconds cf. 0.1915 seconds for the Runge-Kutta. However,
this was for displacement and velocity solutions only; had acceleration
been computed the advantage would not have been so great.

Discussion on the Method

Throughout this report emphasis has been placed on the direct solution
of the equations of motion without first evaluating the normal modes, natural
frequencies and the appropriate generalised forces. This is an advantage
provided the natural frequencies lie close together and the number of modes
affecting the response is of the same order as the number of degrees of freedom
of the idealised system. However, if the number of degrees of freedom is
large and the natural frequencies well separated, the responses are mainly
affected by the lower modes of vibration. This being the case, it would then
be an advantage to adopt a normal mode approach and compute the Transition
matrices for each of these as for a single degree of freedom. There would
then be a reduction in the size of the problem from reducing the matrices
involved and by increasing the step size which would previously have been

14



governed by the bighest mode of the idealised system. In practice, then, one
of the problems is knowing the spacing of the natural frequencies; this may
only be obtained by solving an eigenvalue type problem first.

The method outlined in this report is similar in many respects to the
Transfer matrix methods (8) used in structural analysis; the transfer in
these cases being made in spece and not in time. A similar technigue - the
Method of Mean Coefficients - was used on a non linear problem for a system
with a single degree of freedom (9), the Transition matrices having to be re-
evaluated at each step. A Transition matrix technique has also been used in
reference (10) when studying the stability of a system with periodic coeffi-
cients, but the context was different to that discussed in this paper and no
time domain solutions were evaluated.

CONCLUSIONS

A step by step Transition matrix method has been presented for the
solution of a transient vibration problem for a system with many degrees of
freedom. For the free vibration case, the response at one instant in time
is related to that at a previous step by a single transition matrix. This
matrix is a function of the system mass, damping and stiffness and the step
size. The application to a single degree of freedom system gave an almost
exact solution, and the method was much simpler to apply than other numerical
methods. For forced vibration additiocnal terms are necessary in the recur-
rence relationship to account for the forcing and the higher force time
derivatives. If the step size is small it is sufficient to include only the
force and the first derivative by an additional transition matrix and in
general it is not possible to obtain the same order of accuracy as for the
free vibration case. However, for forcing functions with certain analytic

. kt . . .
forms, 1.e. & , sin kt, cos kt, etc., an accurate solution may be obtalined.

A finite element displacement technigque has been used to construct
the Transition matrices for particular plate systems and several examples on
the applications of these has been given. When applied to a cantilever plate
good agreement has been obtained with some experimental results where the
plate had been excited by simple impulses,

For numerical stability the choice of step size is governed by the
highest eigenvalue of the system and the order of the Taylor Series used when
computing the Transition matrix. From this point of view there is no signifi-
cant advantage in going immediately beyond the 5th derivative, though there is
an advantage in going to the 8th. However, the accuracy of the method always
increases with the order of the Taylor Series used.

An 8th order Transition matrix procedure gave more accurate results

for a large step size than a 4th order Runge-Kutta procedure and there was
also a substantial reduction in the computation time per step.
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APPENDIX

The Runge-Kutta Procedure
The Runge-Kutta procedure which was used for comparison purposes is
given below. This is a special application of the general technigue given in

ref. (1).

The equation of motion,

. -~ - . -

}g = - I_CJ.JXJJ - [02]}\{ + [M ]E’
is written for convenience: .

w= Glw, w, F)

n n n n

The method avoids calculating the higher derivatives by making several
evaluations of G, within the step, h. These are:

v, = h.Glw(t), w(t), F(t))
v, = hegly(t) + hp(t)/2, §(t) + y /2, F(t + h/2) (1)
v, = h.G(X(t) + hﬁ(t)/2 + hXo/h, Q(t) + X1/2’ g(t + h/2))
vy = h.G(p(t) + ni(t) + hy. /2, §(6) + ¥, F(t + h))

z(t +h) and y(t + h) are then given by:
w(t + n) = w(t) + wi(t) + (y + ¥y + y,)0/6 (a.2)
w(t +n) = g(t) + (v + 2y, + 2y, + X3)/6 (A.3)

In equations A.l ... A.3 there are 12 multiplications of (n x n) matrices by
a column matrix plus subsidiary additions at each step. With the Transition
matrices, equation (10), there are two matrix multiplications of order

(2n x 2n), which is equivalent to 8 multiplications of order (n x n). This
implies that the Runge-Kutta would require about 50% more computation time
in solving a problem of this type. However, because the matrices are
smaller not so much computer storage space is required.
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Damping

h order Taylor Series

ratio Ahcrit for n
p=c/c__.
erit 3 i 5 6 T 8
0.000 1.7 2.8 3.3 2.0 2.2 3.4
0.002 1.7 2.8 3.3 1.8 2.1 3.4
0.020 1.8 2.8 3.3 2.1 2.7 3.7
0.200 2.3 2.9 2.8 3.0 3.7 b,
Table 1. Limiting values of Ah for stability.
Order of Taylor Series
3 L 5 6 T 8
Ah 1.0 1.0 2.0 2.0 2.2 3.0
Table 2. Values of Ah for accuracy.
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Exact Soln.* | L4th Order T matrix Choudhury#* Newmark¥®
Disp. Disp. vel. Method method
Ref. 4

1.0000 1.0000 0.0000 1.0000 1.0000
.9689 . 9689 —.247h .9688 .9681
8776 8776 - h7ok L8773 .8782
L7317 L7317 -.6816 . 7310 .7330
5403 .5403 -. 841k .5392 .54h25
.3153 .3154 -.9hko0 .3138 .3184
0707 .0708 -.9975 .0688 .0TLk6
-.1782 -.1782 -.98L0 -.1805 -.1738
-.h161 -.L4161 -.9093 -.4185 =.h1ak
-.6282 -.6281 -. 7781 -.6305 -.6236
-.8011 -.8011 -.5985 -.8031 -. 7973
-.9243 -.9243 -.3817 -.9257 -.9216
-.9900 -.9900 -.9905 -.9889

#These results were taken from reference (4).

Table 3.

Comparison of Uth order Transition matrix solution with exact

solution and solutions by other methods for an undamped
oscillator.

Equation of motion:

T matrix:

. 968913

_—.246396

w+ w= 0,

247396
.968913
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